
Simulations on Adapted Thomson Problem

with Different Frames

Eleven (Shiyi) Chen sc7825@nyu.edu

May 19, 2021

Contents

1 Introduction 2
1.1 Assumption of the model . 2

2 Equations of motion 2
2.1 Notations . 2
2.2 Coulomb Force . 2
2.3 Collision Equations . 3
2.4 Drag . 3

3 Numerical method 4
3.1 Euler’s Method . 4
3.2 Newton’s Second law and its Euler solution . 4

4 Implementation in the code 5
4.1 Forces between ball and ball . 5
4.2 Forces between board and ball . 6
4.3 Collision . 6

5 Validations 7
5.1 validation for Section 4.1 . 7
5.2 validation for Section 4.2 . 8
5.3 validation for the main program . 8

6 Results 8
6.1 2D simulation . 8
6.2 3D simulation . 9

7 Summary and Conclusions 9

Appendices 11

A Default variable values 11

B ball2ball.m 11

C board2ball.m 12

D 2d simulation 12

E 3d simulation 14

1

1 Introduction

Thomson problem is determined the ground state of N electric charges on constrained in a sphere shell given
the repeling effect given by the Coulomb’s law[3]. By comparing the simulation result and continuum theory,
M. Bowick et al. find out the crystalline structure in the ground state for the Thomson problem. In the
meanwhile, Y. Levin and J. J. Arenzon generalized the Thomson problem replacing the sphere shell to a
sphere[1]. They found that with small amount of charge, the charges are likely to go to the surface while for
the large amount of charge, there are some charges stay in the middle of the shpere[2].

My work includes the two dimensional simulation on the Thomson problem and the three dimensional
simulation on the generalized Thomson problem. While the original Thomson problem assumes on a sphere
shell which is a two dimensional object, what if we change to other 2d shape, for example, the 2d square,
will there still be any crystalline structure formation? Or follow the three dimensional by allowing charges
moving freely within the sphere, how will the structure be like in the ground state, will there any charge
stay inside of the shell?

1.1 Assumption of the model

In order to specify our problem, here I list the assumptions I made for my simulations:

• The frame has no charge and the each ball has equal amount of charge with random locations in the
frame at time 0. And the frame is fixed which means it will not move as time goes by.

• The balls have volume and the collisions between ball and ball is imperfect collisions(obey the con-
servation of momentum but lose part of kinetic energy during collision) and it will exchange the
electricity(qafter = (q1 + q2)/2).

• The frame can absorb the electricity from the balls and distribute the it uniformly on the frame and
the exchange of amount of charge will obey the law of conservation of charge, there will be a ratio
introduced to quantify how much charge will be distributed to the frame and the ball.

• The shape of frame will be initially square, frame with other shapes may also be simulate(for example
circle or ball in 3d).

• We consider the friction in the space as described in Section 2.4 except one ball in one frame case.

• No self-rotations for balls.

• No body force(Since we only consider the situation in space).

2 Equations of motion

2.1 Notations

The notations for this section is introduced in Table 2.1.

2.2 Coulomb Force

The Coulomb Force between the two balls is given in Equation 1. Similar to the law of the gravity, the

magnitude of the Coulomb force is proportional to the
1

r2
, while the direction of the force depends on what

kind of charge the object has. In the Thomson problem, we have the homopolar charges, so the direction of
the force repel two charges. I will includes more programming details in Section 3.

|F | = k
|q 1q2 |
r2

k = 9× 109 (1)

2

u, v The speed of the ball a and ball b (m/s)
Cd Drag coefficient
Dr The new drag coefficient
q1, q2 Charge of the ball (C)
a Recovery Coefficient
m Mass of the ball (kg)
ρ Density of the media (kg/m3)
A Area of the ball (m2)
dt Time step in the simulation (s)

Table 1: The notations used in this section

Figure 1: Schematic for the collision

2.3 Collision Equations

The collision equation in one dimension is listed in Equation 2. Since our assumption is that all the mass
of the balls are the same, the mass drop out in the first equation. The second equation defines the recovery
coefficient - a which ranges from 0 to 1. When a = 0, the collision is completely inelastic collision while
a = 1 represents the elastic collision. {

u1 + v1 = u2 + v2
a (u1 − v1) = u2 − v2

(2)

2.4 Drag

In the typical Thomson problem, no drag is included in the system. I include the drag due to the defect of
the Euler’s Method which I will explain more in Section 3.1. Equation ?? shows how the drag is calculated.
So that the speed change due to the drag can be written as

D × dt
m

while D is the drag force calculated with

D = Cd× ρ×A× v2

2
.

Thus we can define a ew drag coefficient as

Dr = Cd× ρ×A× dt

2m
.

3

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6 time step = 0.05

time step = 0.1

exact solution

Figure 2: The numerical approximation in the example

So that
D × dt
m

= Dr × v2.

3 Numerical method

The numerical implementation in this project based on the Euler’s method. Without the damping force to
the system, the velocities of balls increases as time goes by. Although we can make the time step smaller to
get a better result, to get a better result, I decide to simulate the process when the damping exist in the space.

3.1 Euler’s Method

The Euler’s method is a typical method to solve a differential equation. Considering the ODE below:

dA

dt
= A with initial condition A(0) = 1.

We now the exact solution is A = ex, while for more complex ODE system, we may not be also to find the
exact solution. In those kind of situations, a numerical method can be employed to approximate the exact
solution. Euler’s method is a typical numerical method which can help use solve the problem. In the ODE
system above, we can approximate the exact solution by:

A(t+ dt) = A(t) +Adt while dt represents the time step

By setting smaller dt, one can get a more accurate approximation. For the example above, the numerical
solution is shown in Figure 2.

3.2 Newton’s Second law and its Euler solution

Newton’s Second law state that the force on the object is proportional to the product of its acceleration and
mass, i.e.

F = ma = m
dv

dt
.

4

t

A

Applying to our model, the equations for the movement can described as:
d~x

dt
= ~v

d~v

dt
=

~F

m
.

(3)

d~x and d~v are the locations and speeds in cartesian cordinates. In 2d, they are 2d vectors while 3d vectors
in 3d space.

For the program, I create a variable called balls which contains all the information of n balls. I also use
a for loop to update the information every dt seconds. For the 2d simulation, the balls contains 7 rows.
The last row is about the charge for each balls and the first six rows contains the information for locations,
velocities, and accelerations in x and y directions.

The program terminates when the time step reached the larges time step. In each iteration, the program
update the accelerations by calling two functions - ball2ball and board2ball which will be discussed in
Section 4.1 and 4.2 respectively. Then using the new accelerations for each balls, the velocities, then locations
will be updated sequentially. If any collision happens, the charge row will also be updated.

Below illustrates the main loop in my programs:

for i = 1:clockMax

update balls =

locx
locy
velx
vely
accx
accy

charge



ball1 ball2 ball3 balln

...
...

...
...

...
...

ball1 ball2 ball3 balln


;

end

4 Implementation in the code

This project mainly coded in Matlab with some calculation done in Mathmatica. In this section, more
programming implementation about the method will be provided.

4.1 Forces between ball and ball

The Matlab function dist is used to calculate the distances between the balls. The output of the dist

function is the of the form:

Dists =


0 d12 · · · d1n
d21 0 · · · d2n
...

...
. . .

...
dn1 dn2 · · · 0

 .
This is equivalent to:

d = sum((x-y).^2).^0.5

5

while x and y represents the x coordinates and y coordinates of the balls.

The function ball2ball do the calculation for this and is listed in Appendix B show the entire function for
the 3d simulation. Notice that we do not use any for loop in our code in order to enhance the runtime of
the program.

4.2 Forces between board and ball

For the 3d sphere, we don’t need to consider the force from the frame to the balls because the charge is
uniformly distributed according to our assumptions. Since the uniform sphere shell doesn’t exert any forces
on the objects inside the sphere, we can skip this section for the 3d simulation. For the 2d simulation, we
calculate the force to each ball one by one by doing the integration. The entire expression is calculated by
Mathmatica and can be found in Appendix C.

Now, only consider the force from the bottom part of the frame and the ball locates at the position (a, b).
The force can be calculated as ∫ L

2

−L
2

k
λq

(x− a)
2

+ b2
dx while λ =

qtotal
4L

. (4)

By adding the four components from the wall, we can get the total force from the frame.

Figure 3: schematic diagram explaining the integration

4.3 Collision

The law of collision in one dimension is listed in Section 2.3, for two or three dimension, we only need to
apply the same rules on each dimensions as shown in the code below.

% ball with ball collision

balls(3,I(i)) = (ux+vx)/2-a*(ux-vx)/2;

balls(3,J(i)) = (ux+vx)/2+a*(ux-vx)/2;

balls(4,I(i)) = (uy+vy)/2-a*(uy-vy)/2;

balls(4,J(i)) = (uy+vy)/2+a*(uy-vy)/2;

% electron merge

q = (balls(7,I(i))+balls(7,J(i)))/2;

6

balls(7,I(i)) = q;

balls(7,J(i)) = q;

For the collision between the walls and the balls, we just do the reflections, i.e.,

% collision with the verticle boundary

balls(4,I) = -a*balls(4,I);

% collision with the horz boundary

balls(3,J) = -a*balls(3,J);

5 Validations

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4: When Dr = 0.05, 0.1, 0.2, 0.8 at T = 100s

5.1 validation for Section 4.1

To validate the force between ball and ball, I fix 100 by 100 balls with equal amount of charge in the a one
by one space. Since each ball has equal amount of charge, the force in the middle should be small in the
sense that the forces were cancel out by the charges around them as shown in the left side of Figure 5.

7

Figure 5: The forces and the electricity field

5.2 validation for Section 4.2

To validate the force from the frame to balls, the electricity field was plotted out as shown in the right side
of Figure 5. In the middle part has a weaker field strength because the it cancels out from those in four
different directions.

5.3 validation for the main program

The validation for the main loop in the program checks the one ball one frame simulation and look at the
trajectory of the ball with different time step. Starting from (0.1, 0.1), the orbits of the ball is shown in
Figure 6.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 6: track of the balls with time step 0.01(left) and 0.001(right)

6 Results

6.1 2D simulation

By varying the new drag coefficient Dr, the patterns those balls form are as shown in Figure 4 when the sim-
ulation time is long enough. The balls were plotted based on how much charge the have, red represents more

8

charge while black represents little charge. At the final stage, balls are oscillating instead of being stationary.

6.2 3D simulation

For the collision, I only consider the collision between the balls and the frame without considering those
between balls and balls. Other than that, the simulation is almost the same with the 2 d version. Figure 7
shows the result of the simulation for 1,000 balls. As shown from the Figure 7, most balls goes to the surface
of the frame while there are few of them stay in the middle. As for small number of balls, Figure 8 shows
the result. To show the geometry in 3d space, I connect the balls near by.

Figure 7: 3D simulation with 1,000 balls with Dr = 0.1 r=0.5m, the right side is the scaled version of the
left side(some points on the sphere were cut off when zoomed in)

Figure 8: 3D simulation with 12 balls

7 Summary and Conclusions

In this project, adapted Thomson problem was simulated with 2d square frame and the 3d sphere frame.
For the 2d simulation, different patterns was observed at T=100s. For the 3d simulation, with the num-
ber of balls being small, the balls will go to the surface while for the large amount of balls, this could be wrong.

9

References

[1] Mark Bowick et al. “Crystalline order on a sphere and the generalized Thomson problem”. In: Physical
Review Letters 89.18 (2002), p. 185502.

[2] Yan Levin and Jeferson J Arenzon. “Why charges go to the surface: A generalized Thomson problem”.
In: EPL (Europhysics Letters) 63.3 (2003), p. 415.

[3] Joseph John Thomson. “XXIV. On the structure of the atom: an investigation of the stability and
periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of
a circle; with application of the results to the theory of atomic structure”. In: The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 7.39 (1904), pp. 237–265.

10

Appendices

A Default variable values

Variable value(in SI) description
r 0.005 radius of the ball
L 0.5 length of the frame
m 0.002 mass of the ball
T 100 simulation time
dt 0.01 time step
q0 1e-8 initial charge for each ball
a 0.1 recovery coefficient
N 300 charge capacity of the frame
n 600 number of the balls
Dr 0.025 new drag coefficient
Plot 1 whether to plot
Xrn L/2 half of the x length of frame
Yrn L y length of the frame
q1 0 initial charge on the frame

Table 2: parameters for the 2d simulation

B ball2ball.m

1 function [forces_x ,forces_y ,forces_z] = ball2ball(loc ,q)

2 n = size(loc ,1);

3 if size(q,1) ~= n

4 forces_x= NaN;

5 forces_y = NaN;

6 forces_z= NaN;

7 return

8 end

9

10 qq = q*q';
11 k = 9e9;

12 Dists = dist(loc ');
13 % the matrix describe the reletive distance in x y z direction

14 Dxs = loc(:,1) '-loc(:,1);
15 Dys = loc(:,2) '-loc(:,2);
16 Dzs = loc(:,3) '-loc(:,3);
17

18 % The force in x y z direction

19 Forces_x = k.*qq.*Dxs./(abs(Dists).^3);

20 Forces_y = k.*qq.*Dys./(abs(Dists).^3);

21 Forces_z = k.*qq.*Dzs./(abs(Dists).^3);

22

23 % make the diagonal elements equal to 0

24 Forces_x(isnan(Forces_x)) = 0;

25 Forces_y(isnan(Forces_y)) = 0;

26 Forces_z(isnan(Forces_z)) = 0;

27

28 forces_x = sum(Forces_x);

29 forces_y = sum(Forces_y);

30 forces_z = sum(Forces_z);

31

32 end

11

C board2ball.m

1 function [x,y] = board2ball(a,b,L,q,lam)

2 k = 9e9;

3

4 x = k.*(a.^4+2.*a.^2.*(b+(-1).*L).*(b+L)+(b.^2+L.^2) .^2) .^(-1/2) .*((...

5 -1).*(b.^2+(a+(-1).*L).^2) .^(1/2) +(b.^2+(a+L).^2) .^(1/2)).*lam.*q;

6 y = b.^(-1).*k.*(a.*((-1) .*(b.^2+(a+(-1).*L).^2) .^(-1/2)+(b.^2+(a+L) ...

7 .^2) .^(-1/2))+L.*((b.^2+(a+(-1).*L).^2) .^(-1/2)+(b.^2+(a+L).^2) .^(...

8 -1/2))).*lam.*q;

9

10 %y = k.*lam.*q.*a.*(1./r+(L-a)./sqrt(b.^2+(L-a).^2))./b;

11 x(max((a<-L) ,(a>L))) = 0;

12 x(max((b<0) ,(b>L))) = 0;

13 y(max((a<-L) ,(a>L))) = 0;

14 y(max((b<0) ,(b>L))) = 0;

15 end

D 2d simulation

1 % simulation_4

2 % Consider the size of the ball and consider the collisions

3 % between balls

4 % add the side walls

5 % consider the damping force without video recorder

6

7 % % parameters

8 r = 0.005;

9 L = 0.5;

10 m = 0.002;

11 T = 100;

12 dt = 0.001;

13 q0 = 1e-8;

14 a = 0.1;

15 N = 300;

16 % Cd = 0.5;

17 DEN = 1.2;

18 if ~exist('n','var'); n = 600; end

19 if ~exist('Dr','var'); Dr = 0.05; end

20 if ~exist('Plot','var'); Plot = 1; end

21 if ~exist('Xrn','var'); Xrn = L/2; end

22 if ~exist('Yrn','var'); Yrn = L; end

23 if ~exist('q1','var'); q1 = 0; end

24 q0

25 Dr

26 % initial state of the balls

27 if ~exist('balls ','var')
28 balls = [2*Xrn*rand(1,n)-Xrn;Yrn*rand(1,n)];

29 [f_x ,f_y] = ball2ball(balls ',q0*ones(n,1));
30 balls = [balls; zeros(2,n);f_x./m;f_y./m;q0*ones(1,n)];

31 end

32 t = 0;

33 Q = [];

34 E =[];

35 xs = [];

36 ys = [];

37

38 % plotting part

39 if Plot ==1

40 n = size(balls ,2);

41 fig = scatter(balls (1,:),balls (2,:), [],balls (7,:) '.* [balls (7,:) './q0^2,ones(n,2)], '
filled ');

42 xlim([-Xrn Xrn])

43 ylim ([0 Yrn])

44 end

45

12

46 while t<T

47 % Merge the electron of the balls

48 Dists = dist(balls (1:2 ,:));

49 Dists = triu(Dists);

50 [I,J] = find(Dists <2*r&Dists ~=0);

51 xs = [xs , balls (1,1)];

52 ys = [ys , balls (2,1)];

53

54 % consider the collision of the balls

55 if ~isempty(I)

56 for i = 1: length(I)

57 % Move the balls because of the round off error

58 Dist = Dists(I(i),J(i));

59 xlen = 2*r*(balls(1,I(i))-balls(1,J(i)))/Dist;

60 ylen = 2*r*(balls(2,I(i))-balls(2,J(i)))/Dist;

61 x_mid = (balls(1,I(i))+balls(1,J(i)))/2;

62 y_mid = (balls(2,I(i))+balls(2,J(i)))/2;

63

64 if abs(Dist)>=r

65 balls(1,I(i)) = x_mid+xlen /2;

66 balls(2,I(i)) = y_mid+ylen /2;

67 balls(1,J(i)) = x_mid -xlen /2;

68 balls(2,J(i)) = y_mid -ylen /2;

69 else

70 balls(1,I(i)) = x_mid+xlen /2+r;

71 balls(2,I(i)) = y_mid+ylen /2+r;

72 balls(1,J(i)) = x_mid -xlen/2-r;

73 balls(2,J(i)) = y_mid -ylen/2-r;

74 end

75

76 % electron merge

77 q = (balls(7,I(i))+balls(7,J(i)))/2;

78 balls(7,I(i)) = q;

79 balls(7,J(i)) = q;

80

81 % retrieve the speeds

82 ux = balls(3,I(i));

83 uy = balls(4,I(i));

84 vx = balls(3,J(i));

85 vy = balls(4,J(i));

86

87 % recalculate the speeds

88 balls(3,I(i)) = (ux+vx)/2-a*(ux-vx)/2;

89 balls(4,I(i)) = (uy+vy)/2-a*(uy-vy)/2;

90 balls(3,J(i)) = (ux+vx)/2+a*(ux-vx)/2;

91 balls(4,J(i)) = (uy+vy)/2+a*(uy-vy)/2;

92 end

93 end

94

95 % Merge the ball with the board

96 I = find(max(balls (2,:)<r,balls (2,:)>Yrn -r));

97 if ~isempty(I)

98 q = sum([balls(7,I),q1])./(N+length(balls(7,I)));

99 balls(7,I) = q;

100 q1 = N*q;

101 balls(4,I) = -a*balls(4,I);

102 end

103

104 J = find(balls (1,:) <-Xrn+r|balls (1,:)>Xrn -r);

105 if ~isempty(J)

106 q = sum([balls(7,J),q1])./(N+length(balls(7,J)));

107 balls(7,J) = q;

108 q1 = N*q;

109 balls(3,J) = -a*balls(3,J);

110 end

111 [fx ,fy] = force(balls ,Xrn ,Yrn ,q1,m);

112 balls (5,:) = fx;

113 balls (6,:) = fy;

13

114

115 % the damping force propotional to the speed

116 balls (3,:) = balls (3,:) -Dr*balls (3,:) .^2.* sign(balls (3,:));

117 balls (4,:) = balls (4,:) - Dr*balls (4,:) .^2.* sign(balls (4,:));

118

119 %update the velocity

120 balls (3,:) = balls (5,:).*dt+balls (3,:);

121 balls (4,:) = balls (6,:).*dt+balls (4,:);

122

123 % If touch the walls , do the reflection

124 balls(1,balls (1,:)<r-Xrn) = 2*r-2*Xrn -balls(1,balls (1,:)<r-Xrn);

125 balls(1,balls (1,:)>Xrn -r) = 2*Xrn -2*r-balls(1,balls (1,:)>Xrn -r);

126 balls(2,balls (2,:)>Yrn -r) = 2*Yrn -2*r-balls(2,balls (2,:)>Yrn -r);

127 balls(2,balls (2,:)<r) = 2*r-balls(2,balls (2,:)<r);

128

129 % If the ball is too far , delete it

130 q1 = q1+ sum(balls(7,balls (1,:) <-Xrn|balls (1,:)>Xrn|balls (2,:) <0|balls (2,:)>Yrn));

131 balls(:,balls (1,:) <-Xrn|balls (1,:)>Xrn|balls (2,:) <0|balls (2,:)>Yrn)=[];

132 disp(t/T)

133

134 % update the position

135 balls (1,:) = balls (3,:).*dt+balls (1,:);

136 balls (2,:) = balls (4,:).*dt+balls (2,:);

137

138 %plotting

139 if Plot == 1

140 clf

141 n = size(balls ,2);

142 scatter(balls (1,:),balls (2,:), [], balls (7,:) '.*[balls (7,:) './q0^2,ones(n,2)], '
filled ');

143 axis([-Xrn , Xrn ,0,Yrn])

144 axis equal

145 drawnow

146 end

147

148 t = t+dt;

149 Q = [Q sum([balls (7,:),q1])];

150 E = [E sum(balls (3,:) .^2+ balls (4,:) .^2)];

151 end

E 3d simulation

1 % For the spherical frame work

2

3 % initial set up for the cluster

4 clear

5 T = 50;

6 dt = 0.01;

7 N = floor(T/dt);

8 R = 0.03;

9 a = 1.5*R;

10 q0 = 1e-7;

11 n = 300;

12 mass = 1e2;

13 ratio = 100;

14 qc = 0;

15 col = 1;

16

17 % location of the balls

18 x = zeros(1,n);

19 y = zeros(1,n);

20 z = zeros(1,n);

21 r = zeros(1,n);

22 E = zeros(1,N);

23 q = q0*ones(n,1);

24 Dr = 0.1;

25

14

26 for i=1:n

27 r(i)=2*R;

28

29 % put the stars in the sphere with radius R

30 while r(i) > R

31 x(i) = R*2*(rand -0.5);

32 y(i) = R*2*(rand -0.5);

33 z(i) = R*2*(rand -0.5);

34 r(i) = sqrt((x(i))^2 + (y(i))^2 + (z(i))^2);

35 end

36 end

37

38

39 % velocity of the balls

40 vx = zeros(1,n);

41 vy = zeros(1,n);

42 vz = zeros(1,n);

43

44 % plot the initial set up

45 zscaled = abs(q);

46 %cn = ceil(max(abs(zscaled)));

47 cn = ceil(max(q));

48 cm = colormap(winter(cn));

49 fig = scatter3(x,y,z, [], cm(ceil(zscaled) ,:), 'filled ');
50 axis equal

51 axis([-a a -a a -a a]);

52

53 for i = 1:N

54 [Fx , Fy , Fz] = ball2ball ([x',y',z'],q);
55 vx = vx+dt.*Fx./mass -Dr.*vx.^2.* sign(vx);

56 vy = vy+dt.*Fy./mass -Dr.*vy.^2.* sign(vy);

57 vz = vz+dt.*Fz./mass -Dr.*vz.^2.* sign(vz);

58 x = x+dt.*vx;

59 y = y+dt.*vy;

60 z = z+dt.*vz;

61 rr = sqrt(x.^2+y.^2+z.^2);

62

63 % if touch the boundary , do the reflection

64 inx = find(sqrt(x.^2+y.^2+z.^2)>R);

65 for j = inx

66 r = sqrt(x(j)^2+y(j)^2+z(j)^2);

67 x(j) = x(j)*R/r; y(j) = y(j)*R/r; z(j) = z(j)*R/r;

68 m = [vx(j);vy(j);vz(j)]; n = [x(j);y(j);z(j)];

69 nm = m -(2*(m'*n)./(n'*n))*n;
70 vx(j) = col*nm(1); vy(j) = col*nm(2); vz(j) = col*nm(3);

71 qtotal = qc+q(j);

72 qc = qtotal *(ratio/(ratio +1));

73 q(j) = qtotal /(ratio +1);

74 end

75 inx = find(x<0&y<0&z<0);

76 % fig.XData = x(inx);

77 % fig.YData = y(inx);

78 % fig.ZData = z(inx);

79

80 % fig.XData = x;

81 % fig.YData = y;

82 % fig.ZData = z;

83 % drawnow

84

85 scatter3(x,y,z,[],[zeros(size(x,2), 2),rr './R],'filled ');
86 axis equal

87 axis([-a a -a a -a a]);

88

89 drawnow

90 E(i) = sum(vx.^2+vy.^2+vz.^2);

91 end

15

	Introduction
	Assumption of the model

	Equations of motion
	Notations
	Coulomb Force
	Collision Equations
	Drag

	Numerical method
	Euler's Method
	Newton's Second law and its Euler solution

	Implementation in the code
	Forces between ball and ball
	Forces between board and ball
	Collision

	Validations
	validation for Section 4.1
	validation for Section 4.2
	validation for the main program

	Results
	2D simulation
	3D simulation

	Summary and Conclusions
	Appendices
	Default variable values
	ball2ball.m
	board2ball.m
	2d simulation
	3d simulation

